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Abstract: The main objective of this paper is to study the boundedness character, the periodic character, 
the convergence and the global stability of the positive solutions of the difference equation: 

   

k

i n -i
i= 0

n + 1 k

i n -i
i= 0

A + α u
u =

B + β u

∑

∑
, n Z={0,1,...,}∈ ,                                (1.1) 

where  and the initial conditions i iA ,B ,α ,β
              i 0u = ,  i Z ={-k,-k+1,...,0}iϕ ∈ , 
 while k is a positive integer number  and the necessary and sufficient conditions for asymptotic mean 
square stability of the equilibrium point of fractional difference equation is exposed to stochastic 
perturbations  which are directly proportional to the deviation of the system state    from the 
equilibrium point 

nξ nu
u , the form n nσ (u -u )ξ + 1 . 
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1. INTRODUCTION 
   

Difference equations have always played 
an important role in the construction and 
analysis of mathematical models of biology, 
ecology, physics, economic processes, etc [9]. 
The case where any of  is 
allowed to be zero gives different special cases 
of (1.1) which are studied by many authors 
(see, e.g,  [1], [2], [3], [4], [12]). Furthermore, 
the results about such equations offer 
prototypes for the development of the basic 
theory of the global behavior of nonlinear 
difference equations. Note that the difference 
equation (1.1) has been extensively studied     
in the special case   k = 1 in the monograph 
[6].  So, the results presented in our paper are 
new. 

i iA , B ,α ,β

Definition 1.1.  The equilibrium point u  of 
the equation 

n+1 n n-1 n-ku = f (u , u ,..., u ),   n = 0,1,...  
is the point that satisfies the condition: 

u  =  f ( u , u , . . . , u ) . 
 

Definition 1.2. The equilibrium point u  of 
equation (3) is said to be: 
      

1.  locally stable, if  for every  there 
exists  such that every solution  with 
initial conditions  

ε> 0
n{u }δ>0

-k -k + 1 0u ,u ...,u (u -δ ,u + δ )∈ , 
 we have  nu -u <ε ,  for all .   n N∈
     

2. locally asymptotically stable if it is 
locally stable and if there exists γ > 0 such that  
for any initial conditions   
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-k -k+1 0u ,u ...,u (u-γ,u+γ)∈ ,  
the corresponding solution  tends to  n{u } u . 
    

3. global attractor if every solution { }nu   
converges to u  as .  n →∞
     

4. globally asymptotically stable  if u  is  
locally  asymptotically  stable  and u  is also 

obal attractor.  gl
     

5.  unstable  if  u  is not locally stable. 
 

Definition 1.3.  A sequence  is 
said to be periodic with period p if   
for all . A sequence { ,  is 
said to be periodic with prime period  p if p is 
the smallest positive integer having this 
property. 

n{u },  n -k≥

n+pu = 
}nu n -k≥

nu
n -k≥

Assume that   
k k

j i j i
i=j i=j

0 0
k k

i i
i i

i=0 i=0

a = α ,  b = β ,   j=0,1,...,k

             a = a , b = b ,

a = (-1) α ,  b = (-1) β

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

∑ ∑

∑ ∑

%%

% %% %        (1.2) 

and suppose that equation (1.1) has some point 
of  equilibrium u  (not necessary a positive 
one).  

Then by assumption 
B+b u 0≠%           (1.3) 

 

the equilibrium point u  is defined by the 
algebraic equation: 

( ) ( )u= A+au B+bu%%                     (1.4) 

By condition (1.3) equation (1.4) can be 
transformed to the form: 

 

2b u - (a -B )  u -A = 0% %                     (1.5) 
 

It is clear that if 
2(a-B) +4Ab>0%%          (1.6) 

equation (1.1) has two points of equilibrium: 
 

2

1
a-B+ (a-B) +4A b

u =
2b

%% %

%
                    (1.7)  

and  
2

2
a-B- (a-B) +4A b

u =
2b

%% %

%
                    (1.8) 

If 
2(a-B) +4Ab=0%%                      (1.9) 

then equation (1.1) has only one point of 
equilibrium: 

u= (a-B ) 2b%%                    (1.10) 
And at last if 

2(a-B) +4Ab<0%%                    (1.11) 
then equation (1.1) has not equilibrium points. 
 

Remark 1.1. Consider the case A=0, b 0≠% . 
From (1.4) we obtain the following.  If , B 0≠   
and a B≠% , then equation (1.1) has two points 
of equilibrium: 

1
a -Bu =

b
%
%

,   2u =0                   (1.12) 

If, B 0≠ and ¸ then equation (1.1) has 
only one point of equilibrium: 

a=B%
u=0 . If ¸ 

then equation (1.1) has only one point of 
equilibrium: 

B=0

u = a b%% . 
 

Remark 1.2. Consider the case and A = b= 0%

B 0≠ . If a B≠% ¸ then equation (1.1) has only 
one point of equilibrium: u=0 . If a=B¸ then 
each solution 

%
u= const is an equilibrium point 

of equation (1.1). Consequently, the positive 
equilibrium point u  of the difference equation 
(1.1) is given by (1.7). 

Let f: (0, ∞) k+1 → (0, ∞) be a continuous 
function defined by 

k

i i
i= 0

0 1 k k

i i
i= 0

A + α u
f (u ,u ,...,u ) =

B + β u

∑

∑
      (1.13) 

The linearized equation associated of 
equation (1.1) about the positive equilibrium 
point u  is: 

k

n+1 n-i
i=0 i

fz = (u,u,...,u)z
u
∂
∂∑ , n     (1.14) = 0,1,...

or 
k

n+1 i n-i
i=0

z + b z =0∑        (1.15) 

Where 
i

i
i

β u-αfb =- (u,u,...,u)=
u B+bu

i∂
∂ %       (1.16)   

 

Theorem 1.1 (see [1,7,9]). Assume that         
a,b ∈ R  and  k∈{0, 1, 2, . . .}. Then 

a + b < 1         (1.17) 
is a sufficient condition for the asymptotic 
stability of the difference equation 
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n+1 n n-ku +au +bu =0, n=0,1,2,...,    (1.18) 
Theorem 1.1 can be easily extended to a 

general linear difference equation.  
 

Theorem 1.2. (see [1,7]).  Let 
n+k 1 n+k-1 k nu +p u +...+p u =0       (1.19) 

n=0,1,2,...,  
where 1 2 kp ,p ,...,p R∈ and  k {1,2,...}.∈

Then equation (1.19) is asymptotically 
stable provided that  

k

i
i= 0

p < 1∑                    (1.20) 

 
2.  MAIN RESULTS 

 
In this section, we establish some results 

which show that the positive equilibrium point 
u  of the difference equation (1.1) is globally 
asymptotically stable and every positive 
solution of the difference equation (1.1) is 
bounded, the periodic character and the 
necessary and sufficient conditions for 
asymptotic mean square stability of the 
equilibrium point of rational difference 
quation (1.1), if is exposed to stochastic 
perturbations  which are directly 
proportional to the deviation of the system 
state from the equilibrium point 

nξ

nu u , the 
form n n+1-u)ξσ (u . 

 

Theorem 2.1.  Assume that  holds. Let  
 be a solution of the difference 

equation (1.1) such that for some , 
either  

B > a%

n n -k{u }∞=
0n 0≥

nu u  for  n n≥ ≥ 0          (2.1) 

nu u  for  n n≤ ≥ 0          (2.2) 
Then   converges to nu u  as , that is, n →∞

nn
lim u =u
→∞

                     (2.3) 
 

Proof. Assume that (2.1) holds. The case 
where (2.2) holds is similar and will be 
omitted. Then, for , we deduce that  0n n +k≥

k k

i n-i i n-ik
i=0 i=0

n+1 i n-ik
i=0

i n-i i n-i
i=0 i=0

A+ α u 1+ A α u
u = = α u

B+ β u B+ β u

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ k ⎥ ≤⎢ ⎥ ⎢ ⎥

⎥
⎣ ⎦

⎢⎣ ⎦

∑ ∑
∑

∑ ∑
      

k

i n-i
i=0

1+ A a uα u
B+b u

⎡ ⎤⎡ ⎤
≤ =⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦
∑

%
%

 

k

i n-i
i= 0

A + a u= α u
a u (B +b u)

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
∑

%
%%

        (2.4) 

With the aid of (1.3), the last inequality 
becomes: 

k

n+1 i n-i
i=0

u α u a≤ ∑ %                     (2.5) 

and so 
   n+1 n -i 00 i k

u max{u } for  n n +
≤ ≤

k≤ ≥         (2.6) 

Set 
n n-i0 i k

v max{u }  for  n n +k
≤ ≤ 0= ≥         (2.7) 

Then clearly 
n n+1 0v u u    for  n n +k≥ ≥ ≥         (2.8) 

Next, we claim that 
n+1 n 0v v    for   n n +k≥ ≥          (2.9) 

Now, we have     
1 1n+1 n+ -i n+ n-i0 i k 0 i k

v = max{u }=max{u , max{u }}
≤ ≤ ≤ ≤

≤
 

1n+ n nmax{u ,v }=v≤                   (2.10) 
From (2.8) and (2.9), it follows that the 

sequence  is convergent and that n{v }

nn
v= lim v u

→∞
≥ %                    (2.11) 

Furthermore, we get 
k

i n-i
i=0 n

n+1

A+ α u
A+a vu

B+b u B+b u
≤ ≤

∑ %
% %

      (2.12) 

From this and by using (2.9) we obtain, 
 

n+i-1 n
n+1

A+a v A+a vu
B+b u B+b u

≤ ≤
%
%

%
%

      (2.13) 

for i .  = 1 ,.. .,k + 1
Then 

n
n+k+1 n+i n+10 i 1

A+a vv = max {u } u
B+b uk≤ ≤ +

≤ ≤
%
%

 (2.14) 

and by letting  n , we obtain →∞
A + a vv
B +b u

≤
%
%

                   (2.15) 

Consequently, we obtain 
a Av 1-

B+bu B+bu
⎛ ⎞ ≤⎜ ⎟
⎝ ⎠

%
% %

       (2.16) 

From (1.3) and (2.16), we deduce that 
v u≤ , and in view of (2.11), we obtain v=u . 
Thus, the proof of Theorem 2.1 is completed. 
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Theorem 2.2. Let  be a positive 
solution of the difference equation (1.1) and   
B >1. Then there exist positive constants m 
and  M  such that 

-{ }n n ku ∞
=

nm u M ,  n=0,1,...≤ ≤                   (2.17) 
Proof. From the difference equation (1.1), we 
have, when  B >1 

k

n+1 i n-i
i=0

A 1u + α u ,  n=0,1,...
B B

⎛ ⎞
≤ ⎜ ⎟

⎝ ⎠
∑     (2.18) 

Consider the linear difference equation 
k

n+1 i n-i
i=0

A 1w = + α w , n=0,1,...
B B

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑     (2.19) 

with the initial conditions , 
. It follows by complete 

induction that 

i iw =u 0>
 i= -k , . . . , -1 ,0

n nu w≤                                (2.20) 
First of all, assume that . Then we 

have 
B a≥ %

A (B-a)%  is a particular solution of (2.19) 
and every solution of the homogeneous 
equation which is associated with (2.19) tends 
to zero as n→∞.  Hence 

nn

Alim w =
B-a→∞ %

                   (2.21) 
 

From this (19) and (2.20), it follows that 
the sequence {un} is bounded from above by a 
positive constant M say. That is, 

nu M,  n=0,1,...≤                    (2.22) 
Set       

Am =
B + b M%

                   (2.23) 

then we have 
k

i n-i
i= 0

n+ 1 k

i n-i
i= 0

A + α u
Au = = m

B + bMB + β u
≥

∑

∑
%

 (2.24) 

and consequently, we get 
nm u M, n=0,1,...≤ ≤        (2.25) 

which completes the proof of Theorem 2.2 
when .  B>a%

Second, consider the case when . It 
suffices to show that  is bounded from 
above by some positive constant. For the sake 
of contradiction, assume that  is 
unbounded. Then there exists a subsequence 

 such that  

B a≥ %

n{u }

n{u }

n j
{u }

j jj 1+n 1j j
limn = ,  limu = ,  u =
→∞ →∞ +n∞ ∞  

n j=max{u ; -k n 1+n },  j=0,1,2,...≤ ≤     (2.26) 
From (2.18), we deduce that 

j j

k

i -i+n 1+n
i=0

α u Bu≥∑ -A       (2.27) 

Taking the limit as of both sides 
of the last inequality, we obtain 

j → ∞

j

k

i -i+nj i=0
lim α u =
→∞

∞∑        (2.28) 

It is easy enough to show that , 

 and then as  we have: 

j j-i+n 1+nu u≤

iα(i=0,1,2,...k)
k

i=0
a=∑%

j j

k

-i+n 1+n
j=0

α u au≤∑ %
j
                  (2.29) 

From the last inequality and the 
difference equation (1.1), we obtain: 

j j

k

1+n i -i+n
i=0

0 au - α u =≤ ∑%   

 

j j

j

k k

i -i+n i -i+n
i=0 i=0

k

i -i+n
i=0

aA+ α u a-B- β u
=

B+ β u

⎡ ⎤
⎢ ⎥
⎣ ⎦

∑ ∑

∑

% %

 (2.30) 

Consequently, it follows that 

j

k

i -i+n
i=0

β u a≤∑ % -B                   (2.31) 

Then for every i=0,1,2,…,k for which  
is positive, the subsequence  is 
bounded which implies that the sequence 

iβ

j-i+n{u }

j

k

i -i+n
i=0

α u⎧ ⎫
⎨ ⎬
⎩ ⎭
∑  is also bounded. This contradicts 

(2.28) and the proof of the Theorem 2.2 is 
completed. 
 

Theorem 2.3.  Assume that  holds. Then 
the positive equilibrium point 

B>a%
u  of the 

difference equation (1.1) is globally 
asymptotically stable. 
 

Proof. The linearized equation (1.15) with 
(1.16) can be written in the form 

k
i i

n+ 1 n-i
i= 0

β u-αz + z = 0
B + b u∑ %       (2.32) 

 

As B , we get > a%
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k
i i

i= 0

β u -α a+ b u < 1
B + b u B + b u

≤∑
%%

% %
      (2.33) 

 

Thus, by Theorem 2.2, we deduce that the 
equilibrium point u  of the difference equation 
(1.1) is locally asymptotically stable. It 
remains to prove that the equilibrium point u  
is a global attractor. To this end, set  

nn
I lim inf u

→∞
=   and , nS= lim sup u

n→∞

which by Theorem 2.4 are positive numbers.  
Then, from the difference equation (1.1), 

we see that 
A + aS A + aIS ,  I
B + b I B + b S

≤ ≥
%
%

%
%

%

      (2.34)  

Hence 
A+(a-B)I bIS A+(a-B)S≤ ≤%%        (2.35) 
From which it follows that I = S. Thus, 

the proof of Theorem 2.3 is completed. 
 

Theorem 2.4. The necessary and sufficient 
condition for the difference equation (1.1) to 
have positive prime period two solutions is 
that both inequalities 
        2 2A (b-b) -(a+a) (b-b) (B+a)<b (B+a)% % %%  (2.36) 

B+ a<0                                (2.37) 
are valid. 
 

Proof.  First, suppose that there exist positive 
prime period two solutions 

. . . ,P ,Q ,P ,Q , . . .                    (2.38) 
of the difference equation (1.1). We will prove 
that the condition (2.36) holds. It follows from 
the difference equation (1.1) that 

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

A+α Q+α P+α Q+α P+...P=
B+β Q+β P+β Q+β P+...
A+α P+α Q+α P+α O+...Q=
B+β P+β Q+β P+β Q+...

⎧
⎪⎪
⎨
⎪
⎪⎩

  (2.39) 

Consequently, we obtain 
0 1 2 3A+α Q+α P+α Q+α P+...=  

2 2
0 1 2 3=BP+β PQ+β P +β PQ+β P +... (2.40) 

0 1 2 3A+α P+α Q+α P+α O+...=  
2 2

0 1 2 3=BQ+β PQ+β Q +β PQ+β Q +... (2.41) 
By subtracting, we deduce after some 

reduction that 

1 3

-(B+a)P+Q=
β +β +...

       (2.42) 

while by adding we obtain 
 

  PQ 1 3 0 2

1 3

A(β +β +...)-(α +α +...)(B+ a)=
b(β +β +...)

 (2.43) 

where B+a<0 . Now, it is clear from (2.42) 
and (2.43) that P and Q are two positive 
distinct real roots of the quadratic equation 

2t -(P + Q )t+ P Q = 0        (2.44) 
Thus, we deduce that 

2

1 3

- ( B + a ) >
β + β + . . .

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

1 3 0 2

1 3

A(β +β +...)-(α +α +...) (B+a)>4
b (β +β +...)

⎛ ⎞
⎜ ⎟
⎝ ⎠

    (2.45) 

 

From (2.45), we obtain 
 

2A (b -b ) -(a+ a )(b -b )(B + a)<% %%  
 

2< b (B + a)%                    (2.46) 
and hence the condition (2.36) is valid. 

Conversely, suppose that the condition 
(2.36) is valid. Then, we deduce immediately 
from (2.46) that the inequality (2.45) holds. 
Consequently, there exist two positive distinct 
real numbers P and Q such that 
 

1
1 3

1
1 3

-(B + a) 1P = - T
2(β +β + ...) 2

-(B + a) 1Q = + T
2(β +β + ...) 2

⎧
⎪⎪
⎨
⎪
⎪⎩

      (2.47) 

 

where T1 > 0 which is given by the formula 
 

2

1
1 3

-(B + a)T = -
β +β + ...

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

     - 1 3 0 2

1 3

A (β +β +...)-(α +α +...) (B+a)4
b (β +β +...)

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (2.48)  

Thus, P and Q represent two positive 
distinct real roots of the quadratic equation 
(2.44).  

Now, we are going to prove that P and Q 
are positive prime period two solutions of the 
difference equation (1.1). To this end, we 
assume that 
 

-k -k+1 -1 0u =P,  u =Q,...,u =Q,  u =P       (2.49) 
 

We wish to show that 
1 2u =Q,  u =Q         (2.50) 

To this end, we deduce from the 
ifference equation (1.1) that d
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0 0 1 -1 k -k
1

0 0 1 -1 k -k

A+α u +α u +...+α uu = =
B+β u +β u +...+β u

 

 

0 2 1 3

0 2 1 3

A+P(α +α +...)+Q(α +α +...)=
B+P(β +β +...)+Q(β +β +...)

 (2.51) 

 

Dividing the denominator and numerator 
of (2.51) by 
 

1 3-(B+a) (β +β +...)  
 

and using (2.47)-(2.48), we obtain 
 

1 3
1 0 2 1 1 3

1
1 3

1 0 2 1 1 3

-2A(β +β +...)
+(1+ K )(α +α +...)+(1- K ) (α +α +...)

B+a=
-2B(β +β +...)

+(1+ K )(β +β +...)+(1- K ) (β +β +...)
B+a

u =

1 3 1

1 3 1

a - 2A (β +β + ...) (B + a) + a K
=

b - 2B (β +β + ...) (B + a)+ b K
%

%
 (2.52) 

 

where 
 

2

1 2

A (b - b ) -( a + a ) (b - b ) (B + a )K = 1 -
b (B + a )

% %%  (2.53) 
 

and from the condition (2.36), we deduce that 
K1 > 0. Multiplying the denominator and 
numerator of (2.52) by 
 

( )1 3 1b- 2B(β +β +...) (B+a)] -b K%      (2.54) 
 

we have: 
 

1 1 3u = [a-2 A (β + β + ...) (B + a)]×%  
 

1 3 1
2 2

1 3 1

[ b -2B (β +β + ...) (B + a) ]-b a K
× +

[b-2B (β +β + ...) (B + a)] -b K

%

%
 

 

1 3 1 3
1

2 2
1 3 1

2B (β +β +...) 2A (β +β +...)
[b a-a b-a +b K

B+a B+a+
[b -2 B (β +β +...) (B+a ) ] -b K

% %

%
 (2.55) 

After some reduction, we deduce that 
 

1
1

1 3

- ( B + a ) ( 1 + K )
u = ×

2 (β + β + . . . )
 

1
1 0 0 1

1
1 0 0 1

2(β +...)2(α +...) (β +...)-2 (α +...) (β +...)-
(B+a)(Ab-B a)

× =
2 (β +...)2(α +...) (β +...)-2 (α +...) (β +...)-

(B+a) (Ab-B a)

⎡ ⎤
⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 

1
1

1 3 1 3

-(B+a ) (1+ K ) -(B+a ) 1 = = + T =Q
2 (β +β +...) 2 (β +β +...) 2

 (2.56) 

 

0 1 1 0 kA+α u +α u +...+α u -(k-1)
2

0 1 1 0 k -(k-1)

u = =
B+β u +β u +...+β u

 

 

0 2 1 3

0 2 1 3

A+Q (α +α +...)+P (α +α +...)= =
B+Q (β +β +...)+P (β +β +...)

P  (2.57) 

 

By using the mathematical induction, we 
have 

un n+1=P,   u =Q,  ( ) n -k∀ ≥  
 

                 (2.58) 

Thus, the difference equation (1.1) has 
posi

     (2.59) 
Hence the proof of h

 
and

tive prime period two solutions  
. . . , P ,Q ,P ,Q , . . .                          

 T eorem 2.4 is completed. 
Let now {Ω ,σ ,P}  be a probability space

 {F σ, ii Z}∈ ∈  nondecreasing family 
of σ , i.e. F F⊂  for n1 < n2, E 
be e expectation ξ , n

 be a
σ
, n

-algebras of 
h

1n n

Z
2

t ∈ , be

al dif r

 a sequence of 

nF -adapted mutually independent random 
riables such that nE ξ = 0 , 2

nE ξ = 1 . It is 
supposed that the rat fe uation 
(1.1) has an equilibrium point 

va
ion ence eq

u  and is 
exposed to additive stochastic perturbations 
type of n n + 1σ (u -u )ξ  that are directly 
proportional to the deviation of the state nu  of 
system (1.1) from the equilibrium point u So, 
equation (1.1) takes the form 
 

. 

k

i n-i
i=0

n+1 n n+1k

i n-i
i=0

A+ α u
u = ++σ(u -u)ξ

B+ β u

∑

∑
    

 

Note that the equilibrium point 

  (2.60) 

u  of 
equ

o the equilibrium point of equation 
ation  

(1.1) is als
(2.60). Putting n nv =u -u  we will center 
equation (2.60) i ghborhood of the 
point of equilibrium

n the nei
u . From (2.60) it follows 

that: 
k

i i n-i
i=0

n+1 n n+1k

i n-i
i=0

A+ (a -b u)v
v = +σv ξ

B+bu+ b v

∑

∑

%%

% %
    (2.61) 

 

It is clear that stability of the trivial 
solu

(2.60). 

tion of equation (2.61) is equivalent to 
stability of the equilibrium point of equation 

Similarly, we can show that 
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Together with nonlinear equation (2.61) we 
will consider and its linear part 
 

k
i i

n+1 i n-i n n+1 i
a -b uz = γ z +σz ξ ,  γ =∑
%%

i=0 B+bu%
      (2.62) 

 

Two following definitions for s
sed below. 

 

ed stable in probability if for any 

tability are 
u

Definition 2.1. The trivial solution of equation 
2.61) is call(
1ε > 0  and 2ε > 0  there exists δ> 0  such that 

the solution n nv =v ( )ϕ  satisfies the condition 
 

n 1 2
n Z

P{ sup v ε } < ε
∈

 ( ) >ϕ

for any initial function 
 

ϕ  such that 
  

0

n i
i Z

P{sup v ( ) δ}=ϕ
∈

≤ .  1

Definition 2.2. Zero solution of equation 
2.62) is called mean square stable if for any 

 

(
ε> 0  there exists δ> 0  such that the solution  

n nz = z ( )ϕ  
satisfies the condition 

2
n

for any initial function 
E z ( ) εϕ  <

ϕ  such that  

0

i
i Z

= s u p < δϕ ϕ
∈

. 2 2

If besides 
2

nn
lim E z
→ ∞

( ) =0ϕ  

for any initial function ϕ  then the trivial 
solution of equation  

d stability 
con

 (2.62) is called
asymptotically mean square stable.  

Since the order of nonlinearity of equation 
(2.61) is more than 1, then obtaine

ditions at the same time are ([9], [10]) 
conditions for stability in probability of the 
trivial solution of nonlinear equation (2.61) 
and therefore for stability in probability of the 
equilibrium point of equation (2.61). 
 

Lemma 2.1. [4] If 
k

2
i

i = 0
γ < 1 -σ∑        (2.63) 

then the trivial solutio  of e uation
asymptotically mean square stable. 

n q  (2.62) is 

Put 
k k k

γ , α= G , G = γ∑ ∑% %i i i j
0 i=1 j=i

       (2.64) 

Lemma 2.2. [4] If 
 

i=
β=∑

2 2β + 2α 1 -β +% %%
 

σ < 1                    (2.65) 

then the trivial solution o
asymptotically mean square stable.  

 

f equation (2.62) is 

 

Lemma 2.3. [4] Let there exist the 
nonnegative functional 
 

i -k iV = V (i,u ,.. . ,u ) , i Z∈  
 

for which the conditions
 

2 2
-k 0 1 i 2 iEV(0,u ,...,u ) c ,  E V - Eu ,  i Zϕ Δ c≤ ≤ ∈

hen equation (2.62) zero solution is 
asymptotic mean square stable. 

and

ension k+1 and the square matrix  
 

where 
i i+1 i 1 2ΔV =V -V ,  c >0,  c >0  

hold. T

Consider the vectors 
t

n n-k n-1 nz = (z ,...,z ,z )%  
  

tb=(0,...,σ )  
of dim

k k-1 k-2 1 0

0   1   0     0   0
0   0   1     0    0

A=       
0   0    0     0   1
γ  γ γ γ γ

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

L L L L L L

L

L

 

⎛ ⎞
⎜ ⎟

L

L

 

Then equation (2.62) can be described in 
the form 

quare ma

n+1 n n n+1z =A z +bz ξ% %                   (2.66) 
 

Let the s trix ,i jU u=  of 
dimension k+1 has all zero elements except for  

k+ 1,k+ 1u =1  
and consider the matrix equation 

A D A -D = -U′                               (2.67) 

.67) have a 
positive semidefin

necessary

 

Proof.  Consider th  f ction
 

 

Theorem 2.5. Let equation (2
ite solution D with 

k+1,k+1d >0. Then, for asymptotic mean square 
stability of equation (2.62) zero solution, it is 

 and sufficient that the inequality: 
 

k+1,k+1
2σ d <1                    (2.68) 

hold. 
e un al 
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k
2 2

n -i′ ∑% %n n n k + 1 ,k + 1
i= 1

= z D z +σ d zV      (2.69) 

Calculating by virtue of (2.69), 
(2.66), we obtain: 

 

iE VΔ  

 

nEΔV =  

2=E z D z +σ d⎡ ′
k

2 2 2
n+1 n+1 k+1,k+1 n+1-i n n k+1,k+1 n-i

i=1 i=1
z -z D z -σ d z′

k ⎤
=⎢ ⎥

⎣
∑ % %

 

⎦

%

∑

n-k     
2z

Let conditions (2.68) hold. Then the 
functional (2.69) satisfies the conditions of 

eans that equation (2.66) zero 
solu

i.e., 
It means that equation (2.62) zero solution 
ot be mean square stable. Therefore, 
ition (2.68) is n essary for asymptotic 

me

% %

'
n n n+1 n n n+1 n n=E[(A z +b z ξ ) D (A z +b z ξ )-z D z ]+′% % %

 

2 2 2
k+1,k+1 n n-k+σ d E(z -z )=  

        

2
n n=E[z (A D A)-D) z +b D b z ]+′ ′ ′% %

     

2 2 2
k+1,k+1 n n-k k+1,k+1 n+σ d E(z -z )=(σ d -1)E  

 

2

Lemma 2.3. It m
tion is asymptotic mean square stable. It 

follows that condition (2.68) is sufficient for 
asymptotic mean square stability of equation 
(2.66) zero solution. Let condition (2.68) not 
hold, i.e.,  

k + 1 , k + 1d 1≥ .  
Then, EΔV 0≥ . From here it follows that 

 

i

k-1

iV =EVk 0
i=0

EΔ - EV 0≥∑  
 

i 0E V E V > 0≥ . 

cann
cond ec

an square stability of equation (2.62) zero 
solution. Theorem is proved. Remark that for 
every k, equation (2.66) is the system of 
 

(k+1) (k+2) 2  
 

equations. Consider the different particular 
cases of equation (2.66). 
 

Corollary 2.1. For k = 1 condition (2.68) 
takes the form 
 

i 01 1γ < , γ < -γ       (2.70) 
 

1  
2 2

2 -1 1 1
22

1

(1-γ ) ((1-γ ) -γ )σ <d =
1-

0  

If, in particular, 

γ
     (2.71) 

 

0σ =  then condition 
(2.68) is the necessary and sufficien

for quare

t condition 

asymptotic mean s  stability of the 
trivial solution of equation (2.62) for k = 1. 
 

Remark 2.1. Put 0σ = . If β=1%  then the 
rivial solution of equation (2.62) cant              

be stable (for example, nz = z  or 

n+1 n n-1z =0 (z +z ), unstable (for example, 

n+1 n n-1z =2z -z ) but cannot be cally 
easy to see that if β 1≥%  (in 

) then sufficient conditions  
(2.63) and (2.65) do not hold. Moreover, 
necessary and sufficient (for k = 1) condition 
(2.68) does not hold too since if (2.68) holds 
then we obtain a contradiction 
 

n + 1

 asym
,5

stable. Really, it is 
particular, β=1%

)
ptoti

0 1 0 11 1

Remark 2.2. As it follows from the Lemmas 
e time 

β=γ +γ γ +γ <≤ ≤%  
 

2.1, 2.2, 2.3 and Theorem 2.5 at the sam
are conditions for stability in probability of the 
equilibrium point of equation (2.60). From 
conditions (2.63), (2.65) it follows that 1β <% . 

Let us check if this condition can be true 
for each equilibrium point. Suppose at first 
that condition (1.6) holds. Then equation 
(2.60) has two points of equilibrium 1u  and 

2 0u =  defined by (1.7) and (1.8) accordingly.  
Putting 
 

2(a -B ) + 4 A b%%  S =
via (2.64), (2.62), (1.4) we obtain that 
responding 1β%  and 2β%  are: 
 

1
1 2

1

a- (a-B+Sa-bβ = =
⎧
⎪

% % %%%
1

1 2
1

2 2
2 1

2 2

)u a+B-S)=
a+B+S)a+ (a-B+S)B+b u

a- (a-B-S)a-b u a+B+S)β = = =
a+B-S)a+ (a-B-S)λ+b u

⎪
⎨
⎪
⎪
⎩

%
% %% %

% % %% %%
% %% %

(2.72) 

 

So, . It means that the condition 1 2β β = 1% %

β <1 holds only for one from the equilibrium %

points 1u  and 2u . 
amely, 

if a B > 0%

N
 then  + 1β <1% , 

 tif a+B hen  <0%  2β% <1 ,  

if   then   a+B=0% 1 2β =β =-1% % . 
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In lar, if A=
 have: 

particu  then via Remark 1.1 
and (2.62) we

0

- 1β% , β%  1

Therefore, 
 

= B a% - 1
2 = B a%  

1β < 1%   if  B < a%  

2β < 1%   if  B > a% , 

1 2β = β = 1% %  if B = a% . 
 

so, via Rem obtain: equilibrium 
points 

ark 2.1 we 
1u  and 2u  can be stable concurrently 

only if corresponding 1β  and 2β  are negative 
concurrently. Suppose now that condition (1.9) 
holds. Then equation (2.60) has only one point 
of equilibrium (1.10). From .64), (2.62), 
(1.4), (1.10) it follows that corresponding β%  
equals     

% %

(2

1
2
1

a - (a -B )a-b u a+ B )β= = = = 1
B + aB + (a-B )B + b u

% % %% %%
% %%

 
2

As it follows from Remark 2.1 this point 
of equilibrium cannot be asymptotically  
stable. 

Cor

 

 

ollary 2.2.  Let u  be an equilibrium point 
of equation (2.60) such that  
 

k 2 2α -β u < B+ u 1-σ ,  σ <1i ii=0
∑    (2.73) b%

Then the equilibrium point u  is stable in 
probability. 

The proof follows from (2.62), Lemma 2.1 
and Remark 2.2. 

 

Theorem 2.6.  Let u  be an equilibrium point 
of equation (2.60) such that 
 

a - b u < B + b u%%  (2.74) 
2k

22 a -b u < B + a -σ∑ %% %i i
i=0

(B +bu)%  (2.75) 

Then the equilibrium point 
B -a+2bu%%

u  is stab
probability. 

 

Proof.

le in 

  Via (1.4), (2.62), (2.64) we have: 
k-1

α= B+b% %% i iu a -b u∑ %  
i=0

( ) ( )β = a -b u B + b u% % %%  
 

Rewrite (2.2.65) in the fo m r
2σ2 α < 1 + β -

1 - β
%%

% , β <1%  

and show that it holds. From (2.74) it follows 
that β < 1% . Via β < 1%  we have: 

a-bu B+a1+β=1+ = >0
%% %%  

B+bu B+bu% %
 

a-bu 2bu1 >0
% %% %  B-a+-β=1- =

B+bu B+bu
%

% %

so, 
2k

2
i i

i=0

B+a (B+bu)2 a -b u < B+bu -σ =
B+bu B-a+2bu

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
%%% %%

% %%
 

2
2 (B + b u )= B + a -σ

B -a + 2 b u

%
%

%%
 

It means that the condition of Lemma 2.2 
olds. Via Remark 2.2 the proof is completed. 

 

Corollary 2.3. An equilibrium point 

h

u  of the 
equation 

0 n 1 n-1
n+1 n n+1

0 n 1 n-1

μ+α u +α uu = +σ(u -u)ξ
λ+β u +β u

    (2.76) 

is stable in probability if and only if 
 

1 1 0 0u < B + bu α -β u <%  α -β

1 0 1<(B-α +(β +2β )u sign(B+b u)%  (2.77) 
 

2σ < ( B + α -α + 2 β u ) ×  0 1 1
   

1 0
2

1 0 1

(B +α +β u )(B -a+ 2 b u )×
(B -α + (α + 2β )u (B + b u )

%%
%

  (2.78) 

The proof follows from (2.62), (2.68), 

 
3.  CONCLUSIONS 

how that the positive equilibrium point 

 

(2.69). 

 
This study of the establish some results 

which s
u  of the difference equa

ptotica y positive 
ol

tion (1.1) is globally 
lly stable and everasym

s ution of the difference equation (1.1) is 
bounded, the periodic character and the 
necessary and sufficient conditions for 
asymptotic mean square stability of the 
equilibrium point of rational difference 
equation (1.1), if is exposed to stochastic 



 Global Stability Of The Positive Solutions Of Nonlinear Difference Equations And Asymptotic… 
 

 40 

perturbations nξ  which are directly 
proportional to the deviation of the system 
state nu from the equilibrium point u , the 
form n n 1σ (u -u )ξ . 
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