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Abstract: In this paper one proposes a simple algorithm of combining the fusion rules, those rules 
which first use the conjunctive rule and then the transfer of conflicting mass to the non-empty 
sets, in such a way that they gain the property of associativity and fulfill the Markovian 
requirement for dynamic fusion. Also, a new fusion rule, SDL-improved, is presented. 
 
Keywords: Conjunctive rule, partial and total conflicts, Dempster’s rule, Yager’s rule, TBM, 
Dubois-Prade’s rule, Dezert-Smarandache classic and hybrid rules, SDL-improved rule, quasi-
associative, quasi-Markovian, fusion algorithm. 
 
 

 

1. INTRODUCTION 
 

We first present the formulas for the 
conjunctive rule and total conflict, then try to 
unify some theories using an adequate 
notation. Afterwards, we propose an easy 
fusion algorithm in order to transform a quasi-
associative rule into an associative rule, and a 
quasi-Markovian rule into a Markovian rule. 
One gives examples using the DSm classic and 
hybrid rules and SDL-improved rule within 
DSmT. One studies the impact of the VBF on 
SDLi and one makes a short discussion on the 
degree of the fusion rules’ ad-hoc-ity. 
 

2. THE CONJUNCTIVE RULE 
 

For  let T = {t2n ≥ 1, t2, …, tn} be the 
frame of discernment of the fusion problem 
under consideration. We need to make the 
remark that in the case when these n 
elementary hypotheses t1, t2, …, tn are 
exhaustive and exclusive one can use the 
Dempster-Shafer Theory, Yager’s, TBM. 
Dubois-Prade Theory, while for the case when 
the hypotheses are not exclusive one can use 
Dezert-Smarandache Theory, while for non-
exhaustivity one uses TBM. 

Let m:  be a basic belief 
assignment or mass.  

[0,12T → ]

The conjunctive rule works in any of these 
theories, and it is the following in the first 
theories: 
for , T2A∈ (X)(X)mm(A)m 2

AYX
T2YX,

1c ∑
=∩

∧∈

=       (1) 

while in DSmT the formula is similar, but 
instead of the power set  one uses the 
hyperpower set D

T2
T, and similarly m: 

be a basic belief assignment or 
mass: 

[0,1DT → ]

for , TDA∈ (X)(X)mm(A)m 2

AYX
TDYX,

1c ∑
=∩

∧∈

=      (2) 

The power set is closed under ∪ , while the 
hyper-power set is closed under both ∪  and 

. Formula (2) allows the use of intersection 
of sets (for the non-exclusive hypotheses) and 
it is called DSm classic rule. 

∩

The conjunctive rule (1) and its extension 
(2) to DSmT are associative, which is a nice 
property needed in fusion combination that we 
need to extend to other rules derived from it. 
Unfortunately, only three fusion rules derived 
from the conjunctive rule are known as 
associative, i.e. Dempster’s rule, Smets’s 
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TBM’s rule, and Dezert-Smarandache classic 
rule, the others are not. 

For unification of theories let’s note by G 
either  or DT2 T depending on theories.  

The conflicting mass k12 is computed 
similarly: 

(X)(X)mm)(mk 2

YX
YX,

1c12 ∑
=∩

∈

==
θ

θ
G

            (3) 

Formulas (1), (2), (3) can be generalized 
for any number of masses .  2s ≥

 

 
3. ASSOCIATIVITY 

 
The propose of this article is to show a 

simple method to combine the masses in order 
to keep the associativity and the Markovian 
requirement, important properties for 
information fusion. 

Let m1, m2, m3:  be any three 
masses, and a fusion rule denoted by ⊕  
operating on these masses. One says that this 
fusion rule is associative if: 

[0,1G → ]

0,1G →

))(A)m(m(m)(A)m)m((m 321321 ⊕⊕=⊕⊕ f
or all ,               (4) GA ∈
which is also equal to  for 
all .              (5) 

)(A)mm(m 321 ⊕⊕
GA ∈

 
4. MARKOVIAN REQUIREMENT  

 
Let m1, m2, …, mk: and [ ] 2k ≥  

masses, and a fusion rule denoted by ⊕  
operating on these masses. One says that this 
fusion rule satisfies Markovian requirement if:  

)(A)m)m...m((m
)(A)m...m(m

n1n21

n21

⊕⊕⊕⊕
=⊕⊕⊕

−

 

for all .              (6) GA ∈
Similarly, only three fusion rules derived 

from the conjunctive rule are known satisfying 
the Markovian Requirement, i.e. Dempster’s 
rule, Smets’s TBM’s rule, and Dezert-
Smarandache classic rule. 

The below algorithm will help transform a 
rule into a Markovian rule.  

 
5. FUSION ALGORITHM  

 
A trivial algorithm is proposed below in 

order to restore the associativity and 

Markovian properties to any rule derived from 
the conjunctive rule. 

Let’s consider a rule ® formed by using: 
first the conjunctive rule, noted by©, and 
second the transfer of the conflicting mass to 
non-empty sets, noted by operator “O” (no 
matter how the transfer is done, either 
proportionally with some parameters, or 
transferred to partial or total ignorances and/or 
to the empty set; if all conflicting mass is 
transferred to the empty set, as in Smets’s rule, 
there is no need for transformation into an 
associative or Markovian rule since Smets’s 
rule has already these properties). 

Clearly ®  = O(©). 
The idea is simple, we store the 

conjunctive rule’s result (before doing the 
transfer) and, when a new mass arises, one 
combines this new mass with the conjunctive 
rule’s result, not with the result after the 
transfer of conflicting mass. 

Let’s have two masses m1, m2 defined as 
above. 

a) One applies the conjunctive rule to m1 
and m2 and one stores the result: m1©m2 = 
mC(1,2)  (by notation). 

b) One applies the operator O of 
transferring conflicting mass to the non-empty 
sets, i.e. O(mC(1,2)). 

This calculation completely does the work 
of our fusion rule, i.e. m1® m2 = O(mC(1,2)) that 
we compute for decision-making proposes. 

c) When a new mass, m3, arises, we 
combine using the conjunctive rule this mass 
m3 with the previous conjunctive rule’s result 
mc(12), not with O(mC(1,2)). Therefore: mC(1,2) 
© m3 = mC(C(1,2)3) (by notation). One stores this 
results, while deleting the previous one stored. 

d) Now again we apply the operator O to 
transfer the conflicting mass, i.e. compute ô 
mC(C(1,2)3) needed for decision-making. 

e) …And so one the algorithm is continued 
for any number of masses. 3n ≥

The properties of the conjunctive rule, i.e. 
associativity and satisfaction of the Markovian 
requirement, are transmitted to the fusion rule 
® too. 

This is the algorithm we use in DSmT in 
order to conserve the associativity and 
Markovian requirement for DSm hybrid rule 
and SDL improved rule for . 3n ≥
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Depending on the type of problem to be 
solved we can use in DSmT either the hybrid 
rule, or the SDL rule, or a combination of both 
(i.e., partial conflicting mass is transferred 
using DSm hybrid, other conflicting mass is 
transferred using SDL improved rule). 

Yet, this easy fusion algorithm can be 
extended to any rule which is composed from 
a conjunctive rule first and a transfer of 
conflicting mass second, returning the 
associativity and Markovian properties to that 
rule. 

One can remark that the algorithm gives 
the same result if one applies the rule ® to 

masses together, and then one does the 
transfer of conflicting mass. 

3n ≥

 

Within DSmT we designed fusion rules 
that can transfer a part of the conflicting mass 
to partial or total ignorance and the other part 
of the conflicting mass to non-empty initial 
sets, depending on the type of application. 
A non-associative rule that can be transformed 
through this algorithm into an associative rule 
is called quasi-associative rule. And similarly, 
a non-Markovian rule than can be transformed 
through this algorithm into a Markovian rule is 
called quasi-Markovian rule.  

 
6. SDL-IMPROVED RULE  

 
Let T = {t1, t2, …, tn} be the frame of 

discernment and two masses m1, m2 : 
. One applies the conjunctive rule 

(1) or (2) depending on theory, then one 
calculates the conflicting mass (3). In SDL 
improved rule one transfers partial conflicting 
masses, instead of the total conflicting mass. If 
an intersection is empty, say A B = Ø, then 
the mass m(A B) is transferred to A and B 
proportionally with respect to the non-zero 
sum of masses assigned to A and respectively 
B by the masses m

[0,1G →

For two masses one has the formula: 
For Ø , TDA∈≠

 
∑

∑

Φ=∩
∈

=∩
∈

+
+

+=
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)()(
)()()()(
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)()()(

1212

2121
12

2
,

1

  (7) 

where c12(A) is the non-zero sum of the mass 
matrix column corresponding to the set A, i.e. 
c12(A) = m1 (A) + m2 (A)  0. (8) ≠
For more masses one applies the algorithm to 
formulas (7) and (8).  

 
7. AD-HOC-ICITY OF FUSION RULES  

 
Each fusion rule is more or less ad-hoc. 

Same thing for SDL improved. There is up to 
the present no rule that fully satisfies 
everybody. Let’s analyze some of them. 

Dempster’s rule transfers the conflicting 
mass to non-empty sets proportionally with 
their resulting masses. What is the reasoning 
for doing this? Just to swallow the masses of 
nonempty sets in order to sum up to 1? 

Smets’s rule transfers the conflicting mass 
to the empty set. Why? Because, he says, we 
consider on open world where unknown 
hypotheses might be. Not convincing. 

Yager’s rule transfers the conflicting mass 
to the total ignorance. Should the conflicting 
mass be ignored? 

]

(

∩
∩

1, m2. Similarly, if another 
intersection, say A C D = Ø, then again 
the mass m A ∩ C ∩ D) is transferred to A, C, 
and D proportionally with respect to the non-
zero sum of masses assigned to A, C and 
respectively D by the masses m

∩ ∩

1, m2. And so 
on ‘til all conflicting mass is distributed. Then 
one cumulates the corresponding masses to 
each non-empty set. 

Dubois-Prade’s rule and DSm hybrid rule 
transfers the conflicting mass to the partial and 
total ignorances. Not completely justified 
either. 

SDL improved rule is based on partial 
conflicting masses, transferred to the 
corresponding sets proportionally with respect 
to the non-zero sums of their assigned masses. 
But other weighting coefficients can be found. 
Inagaki (1991), Lefevre-Colot-
Vannoorenberghe (2002) proved that there are 
infinitely many fusion rules based on the 
conjunctive rule and then on the transfer of the 
conflicting mass, all of them depending on the 
weighting coefficients that transfer that 
conflicting mass. How to choose them, what 
parameters should they rely on – that’s the 
question! There is not a measure for this. 
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In my opinion, neither DSm hybrid rule 
nor SDLi rule are not more ad-hoc than other 
fusion rules. 

“No matter how you do, people will have 
objections” (Wu Li).  

 

 
8. NUMERICAL EXAMPLES  

 
We show how it is possible to use the 

above fusion algorithm in order to transform a 
quasiassociative and quasi-Markovian rule into 
an associative and Markovian one. Let T = {A, 
B, C}, all hypotheses exclusive, and two 
masses m1, m2 that form the corresponding 
mass matrix: 

 A B A ∪ C 
m1 0.4 0.5 0.1 
m2 0.6 0.2 0.2 

8.1 Let’s take the DSm hybride rule: 
8.1.1. Let’s check the associativity: 
a) First we use the DSm classic rule and we 

get at time t1: mDSmC12(A) = 0.38, mDSmC12(B) 
= 0.10, mDSmC12(A C) = 0.02, 
m

∪
DSmC12(A B) = 0,38, m∩ DSmC12(B  (A C)) 

= 0.12, and one stores this result.          (S1) 
∩ ∪

b) One uses the DSm hybrid rule and we 
get: mDSmH12(A) = 0.38, mDSmH12(B) = 0.010, 
mDSmH12(A∪ C) = 0.02, mDSmH12(A∪ B) = 
0,38, mDSmH12(A ∪ B ∪ C) = 0.12. This result 
was computed because it is needed for 
decision making on two sources/masses only.  

        (R1) 
c) A new masses, m3, arise at time t2, and 

has to be taken into consideration, where 
m3(A) = 0.7, m3(B) = 0.2, m3(A ∪ C) = 0.1. 
Now one combines the result stored at (S1) 
with m3, using DSm classic rule, and we get: 
mDSmC(12)3(A) = 0.318, mDSmC(12)3(B) = 0.020, 
mDSmC(12)3(A ∪ C) = 0.002, mDSmC(12)3(A ∩ B) 
= 0,610, mDSmC(12)3(B ∩  (A C)) = 0.050, and 
one stores this result, while deleting (S1)   (S2) 

∪

d) One uses the DSm hybrid rule and we 
get: mDSmH(12)3(A) = 0.318, mDSmH(12)3(B) = 
0.020, mDSmH(12)3(A C) = 0.002, m∪ DSmH(12)3 
(A B) = 0,610, m∪ DSmH(12)3(A ∪ B ∪ C) = 
0.050. This result was also computed because 
it is needed for decision making on three 
sources/masses only.            (R2) 

e) And so on for as many masses as 
needed. 

First combining the last masses, m2, m3, 
one gets: mDSmC23(A) = 0.62, mDSmC23(B) = 
0.04, mDSmC23(A ∪ C) = 0.02, mDSmC23(A B) 
= 0,26, m

∩
DSmC23(B  (A∪ C)) = 0.06, and one 

stores this result.            (S3) 
∩

Using DSm hybrid one gets: mDSmH23(A) = 
0.62, mDSmH23(B) = 0.04, mDSmH23(A ∪ C) = 
0.02, mDSmH23(A B) = 0,26, m∪ DSmH23 
(A B C) = 0.06. Then, combining m∪ ∪ 1 with 
mDSmC23 {stored at (S3)} using DSm classic 
and then using DSm hybrid one obtain the 
same result (R2). If one applies the DSm 
hybride rule to all three masses together one 
gets the same result (R2). 

We showed on this example that DSm 
hybrid applied within the algorithm is 
associative (i.e. using the notation DSmHa one 
has): DSmHa((m1, m2), m3) = DSmHa (m1, 
(m2, m3)) = DSmHa (m1, m2, m3).  

8.1.2. Let’s check the Markov requirement: 
a) Combining three masses together using 

DSm classic: 
 A B A C ∪
m1 0.4 0.5 0.1 
m2 0.6 0.2 0.2 
M3 0.7 0.2 0.1 

(M1) 
one gets as before: mDSmC123(A) = 0.318, 

mDSmC123(B) = 0.020, mDSmC123(A ∪ C) = 
0.002, mDSmC123(A∩ B) = 0,610, 
mDSmC123(B ∩ (A C)) = 0.050, and one stores 
this result in (S2).  

∪

b) One uses the DSm hybrid rule to 
transfer the conflicting mass and we get: 
mDSmH123(A) = 0.318, mDSmH123(B) = 0.010, 
mDSmH123(A ∪ C) = 0.002, mDSmH123(A B) = 
0,610, m

∪
DSmH123(A ∪ B C) = 0.050. ∪

c) Suppose a new mass m4 arises m4(A) = 
0.5, m4(B) = 0.5, m4(A∪ C) = 0. Use DSm 
classic to combine m4 with mDSmC123 and one 
gets: m4(A) = 0.5, m4(B) = 0.5, m4(A C) = 0. 
Use DSm classic to combine m

∪
4 and mDSmC123 

and one gets: mDSmC(123)4(A) = 0.160, 
mDSmC(123)4(B) = 0.010, mDSmC(123)4(A C) = 0, 
m

∪
DSmC(123)4(A B) = 0,804, m∩ DSmC(123)4(B  

(A C)) = 0.026, and one stores this result in 
(S3). 

∩
∪

d) Use DSm hybrid rule: mDSmH(123)4(A) = 
0.160, mDSmH(123)4(B) = 0.010, mDSmH(123)4 
(A C) = 0, m∪ DSmH(123)4(A ∪ B) = 0,804, 
mDSmH(123)4(A ∪ B ∪ C) = 0.026.        (R4) 
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Now, if one combines all previous four 
masses, m1, m2, m3, m4, together using first 
the DSm classic then the DSm hybrid one still 
get (R4). Whence the Markovian requirement. 
We didn’t take into account any discounting of 
masses. 

8.2. Let’s use the SDL improved rule on 
the same example. 

a) One considers the above mass matrix 
(M1) and one combines m1 and m2 using DSm 
classic and one gets as before: mDSmC12(A) = 
0.38, mDSmC12(B) = 0.10, mDSmC12(A ∪ C) = 
0.02, mDSmC12(A∩ B) = 0,38, mDSmC12(B∩  
(A ∪ C)) = 0.12, and one stores this result in 
(S1). 

 

b) One transfers the partial conflicting 
mass 0.38 to A and B respectively: x/1 = y/0.7 
= 0.38/1.8; whence x=0.223529, y=0.156471. 
One transfers the other conflicting mass 0.12 
to B and A C respectively: z/0.7 = w/0.3 = 
0.12/1; whence z=0.084, w=0.036. One 
cumulates them to the corresponding sets and 
one gets: m

∪

SDLi12(A) = 0.38 + 0.223529 = 
0.603529; mSDLi12(B) = 0.10 + 0.156471 + 
0.084 = 0.340471; mSDLi12(A∪ C) = 0.2 + 
0.036 = 0.056000. 

c) One uses the DSm classic rule to 
combine the above m3 and the result in (S1) 
and one gets again: mDSmH(12)3(A) = 0.318, 
mDSmH(12)3(B) = 0.020, mDSmH(12)3(A C) = 
0.002, m

∪
DSmH(12)3 (A B) = 0,610, 

m
∪

DSmH(12)3(A ∪ B ∪ C) = 0.050, and and one 
stores this result in (S2) while deleting (S1). 

d) One transfers the partial conflicting 
masses 0.610 to A and B respectively, and 
0.050 to B and A C respectively. Then one 
cumulates the corresponding masses and one 
gets: m

∪

SDLi(12)3(A) = 0.716846; mSDLi(12)3(B) = 
0.265769; mSDLi(12)3(A) = 0.017385. 
Same result we obtain if one combine first m2 
and m3, and the result combine with m1, or if 
we combine all three masses m1, m2, m3 
together.  

 
9. VACUOUS BELIEF FUNCTION  

 
SDLi seems to satisfy Smets’s impact of 

VBF (Vacuum Belief Function. i.e. m(T)=1), 
because there is no partial conflict ever 
between the total ignorance T and any of the 
sets of G. Since in SDLi the transfer is done 

after each partial conflict, T will receive no 
mass, not being involved in any partial 
conflict. Thus VBF acts as a neutral elements 
with respect with the composition of masses 
using SDLi. The end combination does not 
depend on the number of VBF’s included in 
the combination. 

Let’s check this on the previous example. 
Considering the first two masses m1 and m2 in 
(M1) and using SDLi one got: mSDLi12(A) = 
0.603529; mSDLi12(B) = 0.340471; mSDLi12 
(A∪ C) = 0.056000.  

Now let’s combine the VBF too: 
(M2)  A B A ∪ C A∪ B C ∪

VFB 0 0 0 1 
m1 0.4 0.5 0.1 0 
m2 0.6 0.2 0.2 0 

a) One uses the DSm classic rule to 
combine all three of them and one gets again: 
mDSmC(VFB)(A) = 0.38, mDSmC(VFB) (B) = 0.10, 
mDSmC(VFB) (A C) = 0.02, m∪ DSmC(VFB) (A ∩ B) 
= 0,38, mDSmC(VFB) (B  (A ∪ C)) = 0.12, 
m

∩
DSmC(VFB)( A B C) = 0 and one stores this 

result in (S1). 
∪ ∪

b) One transfers the partial conflicting mass 
0.38 to A and B respectively: x/1 = y/0.7 = 
0.38/1.8; whence x=0.223529, y=0.156471. 
One transfers the other conflicting mass 0.12 
to B and A4C respectively: z/0.7 = w/0.3 = 
0.12/1; whence z=0.084, w=0.036. Therefore 
nothing is transferred to the mass of 
A ∪ B ∪ C, then the results is the same as 
above: mSDLi12(A) = 0.603529; mSDLi12(B) = 
0.340471; mSDLi12 (A ∪ C) = 0.056000.  

 
10. CONLUSIONS  

 
We propose an elementary fusion 

algorithm that transforms any fusion rule 
(which first uses the conjunctive rule and then 
the transfer of conflicting masses to non-empty 
sets, except for Smets’s rule) to an associative 
and Markovian rule. This is very important in 
information fusion since the order of 
combination of masses should not matter, and 
for the Markovian requirement the algorithm 
allows the storage of information of all 
previous masses into the last result (therefore 
not necessarily to store all the masses), which 
later will be combined with the new mass. 

9
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6. Shafer, G. (1976). A Mathematical Theory 
of Evidence. Princeton, NJ: Princeton 
Univ. Press. 

In DSmT, using this fusion algorithm for 
 sources, the DSm hybrid rule and SDLi 

are commutative, associative, Markovian, and 
SDLi also satisfies the impact of vacuous 
belief function. 

3n ≥

7. Smarandache, F., Dezert, J. (Eds). (2004). 
Applications and Advances of DSmT for 
Information Fusion. Rehoboth: Am. Res. 
Press.  
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